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Phase transformation and microstructure in 
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Taiwan 

Phase transformation and microstructure in Mg-PSZ (8 mol% MgO), sintered (1600~ 6 h) 
with 0 to 15 mol% additions of TiO2 (designated as 0T to 15T specimens), were studied by 
X-ray diffraction and electron microscopy. According to the room-temperature X-ray lattice 
parameter, the saturation of TiO2 in the cubic (c-) zirconia was reached at a total TiO 2 
addition of ca. 6 mol% at 1600~ whereas the solubility limit in tetragonal (t-) zirconia was 
not reached in the composition range studied. The amount of t~zirconia increases with 
increasing Ti02 content at 1600~ as indicated by the monoclinic (m-) zirconia content in 
the furnace-cooled specimens. Regardless of the modification of the lattice misfit strain by 
TiO2 dissolution, the precipitates of t-phase in the c-matrix remain lenticular with {1 00} habit 
plane. Loops, due probably to condensation of the structural vacancies, were found in the 
m-phase of 9T, but not in 1T and 6T specimens. 

1. Introduction 
The morphology of tetragonal (t-) ZrO 2 in binary 
partially stabilized zirconia (PSZ) has been extensivel~ 
studied [1-6]. In PSZ stabilized by MgO (Mg-PSZ) 
the t-ZrO2 has a lenticular shape with a {l 00} habit 
plane (indexed according to the fluorite structure of 
c-ZrO2) [,1]. In PSZ stabilized by TiO (Ti-PSZ) the 
t-ZrO2 also has a lenticular shape with a {1 00} habit 
plane [2]. In PSZ stabilized by CaO (Ca-PSZ) the 
t-ZrO2 is equiaxed with a {1 0 1} habit plane [3]. In 
the early stage of precipitation in PSZ stabilized by 
Y203 (Y-PSZ) the t-ZrO2 also has a {101} habit 
plane, but it commonly develops "colonies" of twin- 
related variants which do not readily transform to 
monoclinic (m-) ZrO2 even when they become quite 
large [-4]. Morphology features of t-ZrO2 in ternary 
systems of (Mg,Ca)-PSZ [5], (Mg,Y)-PSZ [6] and in 
Y-PSZ/Ni2A1Ti cermet [7] have also been reported. 
Differences in the morphology and habit plane beha- 
viour of the t-ZrO 2 phase in these systems have been 
attributed to the misfit in lattice parameters and 
interfacial energy between the t-ZrO 2 particles and 
the cubic (c-) matrix (c-ZrO2) [6-8], following 
Khachaturyan's theory [9]. 

Phase assemblages of fired ceramics (1200-1750 ~ 
of the ZrO2-MgO-TiO 2 ternary system have been 
studied by means of X-ray diffraction, optical micro- 
scopy and dielectric property measurements [10]. Ac- 
cording to Coughanour et al. [10] addition of TiO 2 
reduces the stability of the c-phase in Mg-PSZ. This 
ternary system has also been studied by Bateman et al. 
[-11] using ZrO2-MgO-TiO 2 powders prepared by a 
chemical route. Retention of the t-phase upon the 
addition of TiO 2 was observed. Detailed microstruc- 
tural features, however, were not given by these 
authors. Reported here are results of our observations 
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for (Ti,Mg)-PSZ sintered at 1600~ using transmis- 
sion electron microscopy (TEM), X-ray diffraction, 
and Fourier-transform infrared spectroscopy (FTIR). 

2. Experimental procedure 
The Mg-PSZ powder (8 mol% MgO, Toyo Soda, 
Japan) with 0 to 15 mol% (in 1% increments, de- 
signated as 0T, 1T . . . .  ,15T, respectively) additions of 
TiO 2 (Merck, 99.9% pure) were ball-milled (6 h), dry 
pressed (40MPa), then sintered (1600~ 6h) and 
cooled in an open air furnace. It took more than 6 h 
for cooling from 1600 ~ to below 400 ~ A ZrTiO 4 
pellet for an FTIR standard was reactive-sintered 
(1550~ 44h) from a stoichiometric mixture (ball- 
milled and dry-pressed as above) of ZrO2 (Toyo, Soda, 
Japan) and TiO2 (Merck, 99.9% pure) powders. 

The surfaces of sintered specimens (polished with 
diamond paste, 1 ~tm in size) were analysed by X-ray 
diffractometry (CuK=, 35 kV, 25 mA) for phase identi- 
fication. The {1 1 1)diffraction peaks were used to 
estimate qualitatively the amount of m-ZrO2 phase 
relative to the c- and t-ZrO 2 phases, the zirconia 
phases being indexed as a slightly distorted version of 
the c-fluorite unit cell. The identification of the c- and 
t-ZrO 2 phases in the {400} region of ZrO2 was 
carried out with a step-scanning method (step size 
0.02 ~ fixed count time 90 s, divergence and scatter slits 
1 ~ receiving slit 0.2 mm). The lattice mismatch be- 
tween c- and t-ZrO z was then estimated from the 
d-spacings of the {4 0 0} peaks. 

The polished specimens were HF-etched at room 
temperature for 3-4 rain and gold-coated for scanning 
electron microscopy (SEM), using the Jeol JSM-35CF 
instrument operating at 25 kV. The back-scattered 
electron image (BEI) and energy-dispersive X-ray 
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(EDX) analysis were used to study the distribution of 
the alloying elements in the sintered specimens. Thin 
sections ca. 100 gm in thickness and 1 cm in diameter 
were microtomed from sintered pellets and dried in a 
dessicator for 3 days. Infrared spectra of these thin 
disks were then obtained by use of a Digilab FTS-40 
Fourier-transform infrared spectrometer in transmis- 
sion mode by coaddition of 256 scans in the spectral 
range of 800 to 300 cm- 1 at 4 cm- 1 resolution. Thin 
foils were prepared from dimple-ground thin sections 
(about 10 gm in thickness) by ion-milling and studied 
by TEM (Jeol 200CX at 200 kV). 

along the c-axis, designated as % and the tetragonality 
(ct/at) of the t-phase increase as the TiO 2 content 
increases (Table I). Note that the lattice misfit strain 
~11 (along at) and ~33 (along ct) increases with TiO2 
content (Table I). According to the ratio of {1 1 1} 
counts (Fig. 3), the increase in the quantity of m-phase 
is only slight as the TiO 2 content increases from 1 to 
6 tool %. However, as TiO 2 content exceeds 6 mol %, 
the quantity of m-phase increases rapidly. For speci- 
mens of higher TiO2 contents, our X-ray results in- 
dicate the presence of another phase which appears 
to be ZrTiO4. 

3. Results 
3.1. X - ray  d i f f r ac t i on  
For specimens containing less than 6 mol % TiO2, the 
{4 0 0} d-spacing of the c-phase decreases as the TiO2 
content increases (Fig. 1). This is attributed to the 
substitution of smaller Ti 4 + for Zr 4 § and Mg 2+. The 
ionic radii of Ti 4+, Zr 4+ and Mg 2+ are 0.074, 0.084 
and 0.089 nm, respectively, according to Shannon 
[12], if the coordination number is assumed to be 8. A 
constant X-ray lattice parameter is obtained for speci- 
mens containing more than 6mo1% additions of 
TiO2, indicating that the solubility limit of TiOz in the 
c-phase is reached at a total addition of ca. 6 mol %. 
In contrast, the t-phase is not saturated with TiO 2 up 
to 15 tool % addition as indicated by the continuous 
decrease of the {4 0 0} d-spacing (and hence the lattice 
parameter along the a-axis, i.e. at) of the t-phase with 
increasing TiO2 content (Fig. 2). The lattice parameter 
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Figure 1 X-ray {400} d-spacing of c-phase in (Mg,Ti)-PSZ sintered 
at 1600~ for 6h. 
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Figure 2 X-ray {400} d-spacing of t-phase in (Mg,Ti)-PSZ sintered 
at 1600~ for 6h. 
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3.2. FTIR spectra  
In previous infrared spectroscopic studies of Zirconia 
[13, 14], overlapping peaks (at least four for t-ZrO2 
and as many as nine for m-ZrO2) have been identified 
in the spectral range of 800 to 200 cm- 1. In the case of 
c-ZrO2, the absorptions are even more strongly over- 
lapped, resulting in a broad band centred around 
500 cm -1. Among these absorptions, the one ap- 
pearing in the 740 to 770 cm- 1 range is relatively free 
of interference from other absorptions and is charac- 
teristic of m-ZrO 2. As shown in Fig. 4, FTIR spectra 
of (Mg,Ti)-PSZ are complicated by overlapping 
absorptions of various phases. However, the char- 
acteristic absorption band of the m-phase near 
760 cm - t  [13, 14] is clearly discernible. The relative 
height of this peak increases with the TiO 2 content, 
especially when the latter exceeds 6 tool %. Another 
important feature in Fig. 4 is the gradual appearance 
of a shoulder at 550 cm-1 when the TiO z content 
~xceeds 6 tool %. This is attributed to the presence of 
ZrTiO4 which absorbs characteristically at this fre- 
quency. The absorption spectrum of ZrTiO 4 prepared 
by reactive sintering from a stoichiometric mixture of 
ZrO 2 and TiO2 powders is given in Fig. 4g, where 
absorptions near 400, 450, 550 and 780cm -1 are 
observable. Due probably to the limited amount of 
ZrTiO 4 and the overlap with absorptions of other 
phases, absorptions other than the 550 cm- t peak are 
not as clearly identifiable. These observations are all 
consistent with the X-ray diffraction results above. 

3.3. S E M  o b s e r v a t i o n s  
Our BEI and EDX results indicate the presence of a 
Ti-rich grain boundary phase in specimens with a 
TiO 2 content exceeding 6 tool %. This Ti-rich phase 
was identified as the ZrTiO4 phase detected in our 
X-ray diffraction and FTIR studies. With or without 
the presence of ZrTiO 4, the sintered specimens with 
varied additions of TiO 2 always display distinct angles 
at the grain junctions (Fig. 5). Note that the free 
surface of the as-sintered specimens shows m-pre- 
cipitates (Fig. 5a). This could be due in part to the 
grain-boundary and free-surface precipitation of 
m-ZrO2. Fig. 5b shows a representative etched surface 
of sintered (Mg,Ti)-PSZ. Individual t-precipitate in the 
grain cannot be clearly resolved on SEM photographs 
of etched specimens (Fig. 5b), although its presence 
was confirmed by TEM observations described in the 



TAB LE I Room-temperature lattice parameters and habit planes for partially stabilized zirconia 

Mg-PSZ* (Mg, Ti)-PSZ t 

1T 6T 9T 

a,: (nm) 0.5080 0.5080 0.5057 0.5057 
a t (nm) 0.5077 0.5073 0.5050 0.5037 
ct (nm) 0.5183 0.5188 0.5207 0.5217 
ct/at 1.021 1.023 1.031 1.036 
al ~ ~ 0.0006 0.0014 0.0014 0.0040 
~3 3 ~ 0.0203 0.0213 0.0297 0.0316 
(at-G)/(ct-ar - 0.029 -- 0.065 - 0.047 - 0.125 
Habit plane observed {1 00} {1 00} {1 00} {1 00} 

* Taken from [6] and [8]. 
* Present work, Mg-PSZ (8 tool % MgO) with 1, 6 and 9 mol % TiO 2 for IT, 6T and 9T specimens, respectively, sintered at 1600 ~ for 6h. 

cll  = e.22 = I(at-ao)/ac I; r = I(q-G)/ac I. 
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Figure3 {1 1 1} zirconia counts ratio diffracted from polishe~l 
(Mg,Ti)-PSZ sintered at 1600 ~ for 6 h. 
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Figure 4 Representative FTIR spectra of (Mg,Ti)-PSZ specimens: 
(a) 0T (Mg-PSZ), (b) 3T, (c) 6T, (d) 7T, (e) 9T, (f) 15T, and (g) ZrYiO 4 
standard prepared from constituent oxides. The sharp peak near 
670 cm-  1 is the artefact from atmospheric CO2. 

next paragraph. In general, the grain size of zirconia 
and the size of the t-precipitates within the grain 
increase with increasing TiO 2 content. However, the 
grain growth rate was suppressed in specimens with 

Figure 5 Representative secondary electron image of (Mg,Ti)-PSZ 
specimens: (a) as-sintered, 5T; (b) HF-etched at room temperature 
for 4 rain, 12T specimen. 

more than 6 mol % addition of TiO 2. This could be 
due to the presence of the additional ZrTiO4 phase. 

3.4. TEM observat ions  
Three variants of the t-ZrO 2 phase were found in 
[7113 selected-area diffraction (SAD) patterns of 
twinned zirconia grains of (Mg, Ti)-PSZ specimens 
(Fig. 6a), as in the binary PSZ system. Regardless of 
the amount of TiO 2 addition (Fig. 6b and c), diffuse 
scatter intensity (DSI) was commonly diffracted from 
the c-matrix, especially when the t-variants were out of 
contrast. The size of precipitates within the c-matrix 
(Mg,Ti)-PSZ specimens increased with the increase of 
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Figure6 SAD patterns of (Mg,Ti)-PSZ specimen showing (a) 
t-spots diffracted from three t-variants, Z = [i 11], 9T; also DSI 
diffracted from c-matrix: (b) 9T, Z = [111]; (c) 1T, Z = [011]. 

Figure 7 TEM of (Mg,Ti)-PSZ showing (a) bright field image of 
lenticular t-precipitates in c-matrix of 6T specimen, (b) dark field 
image (g = (001) spot) of m-phase derived from coarsened t-pre- 
cipitate in c-matrix of 9T specimen, Z = [100]. 

TiO z content (Fig. 7a and b), but trace analysis indic- 
ated that the morphology of the t-phase remained 
lenticular with a {1 00} habit plane, as in the Mg-PSZ 
system. The m-phase, formed either by release of 
matrix constraint at the foil edge or from coarsened 
t-precipitates in the interior of the (c + t) grain 
(Fig. 7b), were commonly observed in all the TEM 
specimens. In addition, m-phase also exists as particles 
derived probably from t-particles at 1600~ as dis- 
cussed below. Note that loop-like features were found 
in m-phase grains of the 9T specimen (Fig. 8a), but not 
in 1T (Fig. 8b) and 6T specimens. The (c + t) grains in 
all the TEM samples were always free of loops. 
Longitudinal twins and transverse twins of m-phase 
similar to those found in (Mg,Ti)-PSZ [15] were 
commonly found in coarsened t-precipitates. 

Triple junctions or grain corners of (Mg,Ti)-PSZ do 
not show evidence of any amorphous phase. Coales- 
ence of zirconia grains may occasionally occur as 
suggested by the presence of adjacent (c + t)- and 
m-grains with nearly the same orientation (Fig. 9a). 
Grain growth of zirconia may also proceed by 
means of diffusion-induced grain-boundary migration 
(DIGM) (see Balluffi and Cahn [163 and literature 
cited therein) as indicated by the corrugated grain 
boundary (Fig. 9b). 
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Figure 8 TEM showing (a) loop-like features (arrow) transected by 
twinning in m-phase of 9T specimen, (b) loop-free m-phase in 1T 
specimen. 



impurities in the starting powder cannot be ruled out. 
In general, solid-state sintering and the coalesence of 
grains (Fig. %) are the main mechanisms for micro- 
structural development in the present (Mg,Ti)-PSZ 
samples. The corrugated grain boundary (Fig. 9b) 
indicates that chemical inhomogeneity was caused in 
part by DIGM at 1600 ~ 

Figure9 TEM showing (a) coalesced (c + t) and m-grains, 
.) 

Z = [100], IT; (b) corrugated grain boundary (arrow), 9T speci- 
men. 

4. Discussion 
4.1. Habit plane and morphology of 

t-precipitate 
In the Mg-PSZ system [6] the habit plane of 
t-precipitate is predominantly affected by interfacial 
energy rather than by strain energy because the calcu- 
lated strain energy is insensitive to orientation devi- 
ation from { 1 0 0}. The lattice misfit strains ~11 and e33 
increase with increasing TiO 2 content in (Mg,Ti)-PSZ 
(Table I). However, the t-ZrO 2 remain lenticular in 
shape with a {100} habit plane as in the Mg-PSZ 
system. It follows that the morphology and habit 
plane of t-precipitates in (Mg,Ti)-PSZ should also be 
affected mainly by interracial energy. Note that 
m-variants are longitudinal- and transverse-twinned 
as in Mg-PSZ [17] and (Mg,Ti)-PSZ systems [15], 
indicating that m-variants were not modified by the 
addition of TiO 2. 

4.2. Mechanism of microstructural 
development 

Eutectic melting is allowed around 1600~ for the 
MgO-TiO2 pair (eutectic points: 1600 _+ 20 ~ MgO 
with ~ 57 tool % TiO2; and 1610 + 20 ~ MgO with 

80 tool % TiO2) [18]. Liquid formation at 1600 ~ 
in the present (Mg,Ti)-PSZ samples was limited as 
indicated by the shape of the sintered grains (Fig. 5). 
However, the possibility of the formation of a minor 
amorphous film at the grain boundary due to trace 

4.3. Effect of TiO2 dissolution on t-m 
transformation 

TiO 2 dissolution in ZrO 2 is known to lower the 
martensitic temperature (M~) of t-m transformation in 
pure ZrO2 [19] and in Y-PSZ [20]. Although the 
effect of TiO 2 dissolution on M S in the (Mg,Ti)-PSZ 
system is not studied, M~ should certainly be lower 
than the present sintering temperature (1600 ~ ac- 
cording to Coughanour et al. [10]. The slight increase 
of the amount of m-phase with increasing TiO 2 (Fig. 
3) must therefore be interpreted as due to the forma- 
tion of t-phase at the expense of c-phase at 1600~ 
and subsequent t-m transformation of the coarsened 
t-precipitates and particles when the samples were 
cooled from 1600 ~ to room temperature. We have 
noted the abrupt increase in the amount of the 
m-phase for specimens containing more than 6 mol % 
additions of TiO 2. This could be due to an abrupt 
increase (for whatever reasons) in the number of 
t-precipitates and particles reaching the critical size 
for t-m transformation. Alternatively, the presence of 
ZrTiO~ could cause thermal mismatch and/or poorer 
matrix constraint which are among the known para- 
meters controlling the nucleation of the martensitic 
t-m transformation (see RuNe and Heuer [21] and 
literature cited therein). This argument is a distinct 
possibility in view of the anisotropic expansion of 
orthorhombic ZrTiO4 and the transformation of 
ZrTiO4 to a baddeleyite (m-ZrO2) structure under 
high pressure [22], indicating that the former is more 
compressible than the latter. 

4.4. Loops and DSI 
Since X-ray and electron diffraction and FTIR spectra 
did not detect any decomposition product (e.g. MgO 
as in the Mg-PSZ system [11]) in the 9T specimen, 
the loop-like features in the m-phase grain were inter- 
preted as loops due to the condensation of oxygen 
vacancies in t-ZrO 2 particles. The loops survived the 
t-m transformation, as indicated by the shearing of 
loops through m-twins (Fig. 8a). Loops were not 
found in (c + t)-ZrO 2 grains because the c-matrix can 
accommodate a significant amount of oxygen vacan- 
cies. This is consistent with the observation that the 
c-bearing grain (but not the m-grain) shows significant 
DSI, which has been attributed to the existence of an 
anisotropic defect displacement field (such as the local 
relaxation of lattice by oxygen vacancies) along the 
(1 1 1) directions in the real lattice [23]. 

Loop-like features were found in the m-phase of the 
9T specimen but not in 1T and 6T specimens, indicat- 
ing that the TiO 2 content affects the formation of 
loops. The dissolution of TiO 2 in the t-zirconia lattice 
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does not increase the concentration of oxygen vacan- 
cies since Zr 4§ is replaced by Ti 4+. However, existing 
vacancies may possibly condense to form voids or 
loops in order to accommodate the distortion of the 
polyhedron when a significant amount of Ti 4+ was 
introduced. Loops may form in the t-lattice either at 
1600 ~ or upon cooling and survive the subsequent 
t-m transformation. During the ~-Ni2A1 a to [3-NiA1 
transformation, voids or loops were also formed ac- 
companied by the replacement of structural vacancies 
in ~-Ni2A13 by nickel [24]. 

5. Conclusions 
The following conclusions were drawn from X-ray 
diffraction, infrared spectroscopy and electron micro- 
scopy observations of Mg-PSZ (8 mol % MgO) speci- 
mens with added TiO2, sintered at 1600 ~ for 6 h: 

1. The solubility limit of TiO2 in the c-phase is 
reached at a total addition of ca. 6 mol % at or near 
1600 ~ 

2. The addition of TiO2 increases the m-ZrO2 con- 
tent upon cooling to room temperature. 

3. The t-precipitates in the c-matrix remain lenti- 
cular with a { 1 0 0} habit plane. 
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